China supplier High Efficiency with Permanet Magnet Screw Air Compressor Supplier small air compressor

Product Description

High Efficiency With Permanet Magnet Screw Air Compressor Supplier 
Key Parameters:

MODEL POWER
 (KW, HP)
PRESSURE
  Bar
CAPACITY       (m³/min) WEIGHT
  Kg
OUTLET POPE
    DIAMATER
NOISE
LEVEL
  dB
AMQAM7.5A 5.5KW, 7.5HP 7/8/10 Bar 0.65/0.60/0.55 380 G3/4 65
AMQM10A 7.5KW, 10HP 7/8/10 Bar 1.05/0.99/0.90 380 G3/4 65
AMQM15A 11KW, 15HP 7/8/10 Bar 1.68/1.59/1.45 505 G3/4 65
AMQM20A 15KW, 20HP 7/8/10 Bar 2.20/2.10/1.91 505 G3/4 65
AMQPM7.5A 5.5KW, 7.5HP 7/8/10/13 Bar 0.65/0.60/0.55/0.45 380 G3/4 65
AMQPM10A 7.5KW, 10HP 7/8/10/13 Bar 1.05/0.99/0.90/0.75 380 G3/4 65
AMQPM15A 11KW, 15HP 7/8/10/13/15 Bar 1.68/1.59/1.45/1.30/1.14 505 G3/4 65
AMQPM20A 15KW, 20HP 7/8/10/13/15 Bar 2.20/2.10/1.91/1.74/1.50 505 G3/4 65

About CHINAMFG System:

1)The simple structure and less components make it an easy maintenance with low cost.

2)The Robot Palletizer takes less space and performs more flexible and accurate.

3)All the control can be implemented through a touch screen of control box for an easy operation.

4)The robot can work continuously for a long time, saving the laborforce a lot and being more productive.

Warranty:

One year for core and permanent warranty for firmware.

After-sales service:

Engineers available to serve oversea.

Q: Are you trading company or manufacturer?
A: We are a professional manufacturer, we are happy welcome clients from CHINAMFG to visit our factory and cooperate with us.

Q: How long is your delivery time?
A: Generally it is take 2 weeks.

Q: What’s your MOQ?
Q: Our MOQ only 1 set. 

If you have any questions about the robot arm problem, please do not hesitate to contact us! 

After-sales Service: Online Video Service
Warranty: 12 Months
Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Customization:
Available

|

air compressor

How are air compressors utilized in pharmaceutical manufacturing?

Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:

1. Manufacturing Processes:

Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.

2. Instrumentation and Control Systems:

Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.

3. Packaging and Filling:

Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.

4. Cleanroom Environments:

Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.

5. Laboratory Applications:

In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.

6. HVAC Systems:

Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.

By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China supplier High Efficiency with Permanet Magnet Screw Air Compressor Supplier   small air compressor China supplier High Efficiency with Permanet Magnet Screw Air Compressor Supplier   small air compressor
editor by CX 2023-10-08